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Abstract. Manganese ions in a mixed-valent state of two magnetic configurations, Mn4+ and
Mn3+, play an important role in the magnetoresistance of LaMnO3-based systems. We describe
each Mn impurity with the Mn4+ represented by a spinS = 3/2 (three localized d electrons in
the t2g orbitals with their spins ferromagnetically coupled) and the Mn3+ configuration having
an additional localized d electron in one of the eg orbitals to form a total spin(S+1/2). The eg
electron hybridizes with the conduction electrons and the multiple occupancy of the eg level is
excluded by a large Coulomb energy at each site. This gives rise to a quadrupolar Kondo effect,
which compensates the orbital degrees of freedom into a quadrupolar singlet, and interferes
with the usual spin Kondo effect. We consider a pair of such manganese ions and allow the
eg electrons to hop between the two sites. Hence, bonding and antibonding levels are formed
giving rise to the ferromagnetic double-exchange mechanism. We study the interaction between
the impurities in the integer-valent and the mixed-valent regimes. In the integer-valent limit we
renormalize the interactions using the vertex function in the leading logarithmic approximation.
Two neighbouring impurities with the same integer valence interact ferromagnetically. Mn3+
ions have in addition a quadrupolar Kondo effect. In the intermediate valence regime we
calculate the ground state energy, the valence, the population difference between the bonding
and antibonding states, the charge susceptibility, the quadrupolar susceptibility and the response
to a charge imbalance between the two sites as a function of the energy of the eg level in
zero magnetic field and for the spin-polarized limit (ferromagnetic lattice) using a mean-field
slave-boson formulation. The results indicate that the intersite hopping suppresses charge order
and lattice distortions.

1. Introduction

The discovery of the colossal magneto-resistance (CMR) in La0.67Ca0.33MnO3 films [1]
renewed the interest in the compounds of the LaMnO3 family [2, 3]. The CMR is a
collective phenomenon of a lattice of Mn atoms, which occurs close to the metal–insulator
and para-/ferromagnetic transitions of the compounds. Charge order and coupling to
the lattice, either in the form of polarons or the Jahn–Teller effect, have been found
[4–6]. The lattice distortions manifest themselves in changes of the Mn–O bond lengths
and angles, i.e. in local quadrupolar distortions in an otherwise cubic environment
[7]. Most attempts to theoretically explain the phenomenon invoke the double-exchange
mechanism [8].

The manganese ions exist in a mixed tri-/tetravalent state in which each of the three t2g

orbitals is singly occupied with their spins coupled to form a total spinS = 3/2. The eg
orbitals, on the other hand, are empty for Mn4+ and occupied by one 3d electron in Mn3+,
which is ferromagnetically correlated with the localized t2g electrons. The intermediate
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valence character of the Mn ions arises from the eg electron, which may be localized at
the Mn ion or become an itinerant electron either via hopping or hybridization [9]. A local
change in the Mn–O bond lengths and angles corresponds to a lifting of the degeneracy of
the two eg levels (quadrupolar crystalline field).

In previous papers we studied the partial aspect of an isolated Mn impurity embedded
into a crystal represented by a band of conduction electrons [10–13]. The single-impurity
problem could be an important step toward the understanding of the full lattice problem.
Studying the charge and quadrupolar susceptibilities we found that due to the interplay of
the quadrupolar and spin Kondo effects [12] the spin-polarized (ferromagnetic) lattice is
more favourable for charge order and lattice distortions than the paramagnetic electron gas
[13]. The single-impurity problem lacks one key aspect of the manganites, namely the direct
hopping of the eg electrons between the Mn ions, which is the basis of the double-exchange
mechanism [14].

In this paper we extend our results for an isolated Mn impurity to a pair of impurities
embedded in a crystal represented by a band of conduction electrons. This allows us to
study directly the interplay of the double-exchange mechanism (arising from the hopping
matrix element for the eg electrons between the ions) with the quadrupolar Kondo effect.
We consider (i) the case of two integer-valent impurities and (ii) the situation of two
mixed-valent impurities. Both regimes are important because the dominant mechanisms of
interaction are different. Integer-valent impurities interact via the Ruderman–Kittel–Kasuya–
Yosida (RKKY) interaction, while in the mixed-valent regime via the double-exchange
mechanism. Close to integer valence there is a crossover region where both mechanisms
have comparable magnitudes.

The rest of the paper is organized as follows. In section 2 we introduce the two-
impurity model and summarize the results obtained for an isolated impurity. In section 3
we analyse the intersite interaction between the impurities in the integer-valent regime. This
interaction is of the RKKY type with renormalized coupling parameters and is ferromagnetic
at short distances if the Mn ions have the same integer valence. In section 4 we study the
intersite interaction between the impurities in the mixed-valent regime. In this limit the
double-exchange mechanism dominates over the RKKY exchange. Using a mean-field
slave-boson approach we calculate the ground state energy, the valence, the occupation
of the bonding and antibonding levels, the charge and quadrupolar susceptibilities and the
response function for a charge imbalance between the two impurities in zero magnetic field
and for the ferromagnetic lattice. Conclusions follow in section 5.

2. Model and results for an isolated impurity

2.1. Two-impurity model

The model under consideration is [12, 15, 16]

H =
∑
kmσ

εkc
†
kmσ ckmσ + εeg

∑
jM∗m

|jS∗M∗m〉〈jS∗M∗m|

+V
∑

kjσmMM∗
(SM, 1

2σ |S 1
2S
∗M∗)[exp(ik ·Rj )c†kmσ |jSM〉〈jS∗M∗m| + HC]

−t
∑

mσM1M2M
∗
1M
∗
2

(SM1,
1
2σ |S 1

2S
∗M∗1)(SM2,

1
2σ |S 1

2S
∗M∗2)

×{|1SM1〉〈1S∗M∗1m||2S∗M∗2m〉〈2SM2| + HC}. (1)
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The first term is the kinetic energy of the conduction electrons andm = +,− labels the two
orbital channels with eg symmetry. The impurities are labelled withj = 1, 2, and the bra and
ket denote the impurity states. The states of the Mn4+ configuration are represented by a spin
S (=3/2) andz-projectionM, arising from three singly occupied t2g orbitals with their spins
coupled ferromagnetically (first Hund rule). The states of the Mn3+ configuration, on the
other hand, have in addition one eg orbital occupied, which is ferromagnetically correlated
with the localized t2g electrons to form a total spinS∗ = S+ 1

2 with spin projectionM∗. The
Mn3+ states have in addition a labelm to indicate which of the eg states is occupied. The
energy difference between the Mn3+ and Mn4+ configurations relative to the Fermi level is
εeg . The hybridization amplitudeV and the hopping matrix elementt allow for transitions
between the two configurations. This gives rise to the intermediate valence character of the
Mn ions. The Clebsch–Gordan coefficients select the spin components and are needed to
preserve the spin rotational invariance. The completeness condition for the impurity states
requires ∑

M∗m

|jS∗M∗m〉〈jS∗M∗m| +
∑
M

|jSM〉〈jSM| = 1. (2)

Note that the model excludes the multiple occupancy of the eg levels, which can only be
empty or occupied by one electron at each site. This corresponds to an implicit infinite
on-site Coulomb repulsion.

2.2. Results for an isolated integer-valent impurity

In this subsection we summarize our results for isolated impurities in the integer-valent
limits Mn4+ and Mn3+. Impurities are isolated ift = 0 andR = |Ri −Rj | → ∞. The
integer-valent limits are obtained via a Schrieffer–Wolff transformation, which eliminates
the hybridization term at the expense of higher order interaction terms [12].

For a tetravalent Mn impurity the Schrieffer–Wolff transformation leads to the following
exchange interaction (εeg � 0, the impurity states are|SM〉)

H 4+
exch = −

V 2

|εeg |
∑

kk′σσ ′mMM ′

[
S + 1

2S + 1
δσσ ′δMM ′ + 2

2S + 1
SMM ′ · sσσ ′

]
c
†
kmσ ck′mσ ′ |SM〉〈SM ′|

(3)

where the first term represents the identity and the second term a ferromagnetic spin
exchange. Note that the interaction is diagonal in the orbital channelm. The electron–
hole excitations in the electron gas give rise to logarithmic terms in the vertex function.
Within the leading logarithmic approximation the two vertex amplitudes renormalize to

00(ω) = − (S + 1)V 2

(2S + 1)|εeg |
0s(ω) = − V 2/|εeg |

1+ [2V 2ρ/(2S + 1)|εeg |] ln(D/|ω|) (4)

whereD is the cut-off for electronic excitations and the two amplitudes refer to the normal
scattering and exchange, respectively. Asω → 0 the exchange vertex tends to zero,
characteristic of the weak coupling regime and the asymptotic freedom of the impurity
spin.

The Mn3+ integer-valent limit, on the other hand, renormalizes to a strong coupling
fixed point, which corresponds to a Kondo effect in both the spin and orbital sectors.
The Schrieffer–Wolff transformation yields four vertices, i.e. the trivial normal scattering
amplitude and three nontrivial scattering amplitudes, namely, pure spin exchange (0s(ω)),
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pure quadrupolar pseudospin exchange (0m(ω)) and a combined spin and quadrupolar
exchange (0sm(ω)),

0̃(ω) = 1

4
00(ω)ÎmÎs + 1

2S + 1
0s(ω)Îm(S · s)

+0m(ω)(T · τ )Îs + 4

2S + 1
0sm(ω)(T · τ )(S · s). (5)

HereS (s) andT (τ ) are spin and pseudospin (orbital channels) operators for the impurity
(conduction electrons), and̂Is and Îm are the identity operators in the spin and quadrupolar
spaces, respectively. The operatorS acts on the space of the spinS∗. The renormalization
group equations for these amplitudes within the leading logarithmic order are [12]

d00

dx
= 0

d0s

dx
= 1

2S + 1
(0s)2+ 3

2S + 1
(0sm)2

d0m

dx
= (0m)2+ 2S + 3

2S + 1
(0sm)2

d0sm

dx
= 20m0sm + 2

2S + 1
0s0sm (6)

with x = ln(D/D′), whereD′ is the cutoff after all excitated states of energy in the interval
D′ < |ω| < D have been eliminated.

Due to the interference between the orbital and spin Kondo effects the Kondo energy
scale is a function of the magnetic field. For the spin-polarized impurity (ferromagnetic
lattice) the characteristic energy scale is given byTK = D exp(−1/J ρF ) independently
of the spinS, whereJ = 2V 2/|εeg |. In zero magnetic field the three coupled scattering
amplitudes diverge at the same energyω given by [12]

T ∗K = D exp[−a(S)/(J ρF )] (7)

wherea(S) is a constant that depends on the spin. ForS = 0 we obtaina(0) = 0.5 (SU(4)
invariance), forS → ∞ we havea(∞) = 1 (classical spin, i.e. pure quadrupolar Kondo
effect) and forS = 3/2 it is a(3/2) = 0.8306. The spin is compensated fromS∗ = S+ 1

2 to
S via the spin Kondo effect and simultaneously the orbital exchange gives rise to an orbital
singlet state via the quadrupolar Kondo effect. The ground state of the impurity is always
magnetic forS > 0.

2.3. Results for an isolated mixed-valent impurity

For an isolated intermediate valence impurity we calculated [13] the ground state energy,
the valence, and the charge and quadrupolar susceptibilities as a function ofεeg within
(a) the saddle-point slave-boson formulation, (b) the non-crossing diagram approximation
and (c) the Betheansatz (spin-polarized limit only). The quadrupolar crystalline field
susceptibility is related to deviations of the Mn–O bond lengths and angles from their values
in cubic symmetry, and to the response to local deformations due to the Jahn–Teller effect.
The charge susceptibility (defined asχcharge = −∂2EG/∂ε

2
eg

, whereEG is the ground state
energy) for the single impurity, on the other hand, is a measure for a possible charge order
in a lattice of Mn ions (compound). For each case we compared the zero-magnetic-field
case to the spin-polarized limit [13].

Both the mean-field slave-boson and the non-crossing diagram approximations are
expansions in terms of the inverse of an effective degeneracy for the d electron with
eg symmetry [17]. The effective degeneracy arises from the interplay of the spin and
quadrupolar Kondo effects and is the same for both approaches, deg= 2(2S+2)/(2S+1),
but is slightly different from that obtained within the leading logarithmic order approach,
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Neff = 2/a(S), wherea(S) is defined in equation (7). Both approaches also yield very
similar results and the same trends.

The peak of the charge susceptibility increases with the magnetic field (consequence of
the effective reduction of the degeneracy), indicating that the ferromagnetic state for the Mn
lattice is more likely to have charge order than the zero-magnetic-field ground state. Also
the quadrupolar response increases with increasing magnetic field, since the spin screening
(spin undercompensation) is gradually broken up. As the spin compensation is broken up,
the Kondo energy scale is reduced and henceχquadr enhanced. Hence, within the limitations
of an impurity model, this result suggests that quadrupolar distortions of the Mn–O bond
lengths are more favourable in the spin-polarized regime, i.e. close to or in the ferromagnetic
regime of LaMnO3 compounds, rather than in the paramagnetic phase.

3. RKKY interaction for integer-valent impurities

In this section we study the intersite interaction of two Mn impurities in the same integer-
valent configuration. The hoppingt between the sites does not play any role in this limit,
since either all eg levels are empty (Mn4+ ions) or both sites have exactly one eg electron
(Mn3+ ions). The interaction is then mediated by the conduction electrons and hence of the
RKKY type.

Consider first two Mn4+ ions. The RKKY interaction is then given by

Hint = 4mk4
F

(2π)3

(
2

2S + 1
0s
)2

F(2kFR)S1 · S2 (8)

where we assumed a parabolic band of effective massm, kF is the Fermi wavenumber,0s

is given by equation (4),R is the distance between the impurities and

F(x) = x cos(x)− sin(x)

x4
. (9)

For short distances, i.e. smallx, we haveF(x) ≈ −1/(3x), so that for nearest neighbour
sites and low carrier concentration the interaction is ferromagnetic. Since0s is reduced in
magnitude by the electron–hole excitations, the coupling between the impurities is expected
to be weak.

The situation is more complicated for a pair of Mn3+ impurities, since there are three
nontrivial vertices (see equation (5)). Tracing out the conduction electron degrees of freedom
we obtain the expression

Hint = 4mk4
F

(2π)3
F(2kFR)

[
1

(2S + 1)2
(0s)2Îm(S

∗
1 · S∗2)+ (0m)2(T1 · T2)Îs

]
+4mk4

F

(2π)3
F(2kFR)

[
2

(2S + 1)2
(0ms)2(T1 · T2)(S

∗
1 · S∗2)

]
. (10)

This case corresponds to a strong coupling fixed point because the vertex functions all
diverge at|ω| = T ∗K . At short distances and low carrier concentration,F(2kFR) < 0, so
that the interaction between neighbouring ions is again ‘ferromagnetic’.

In addition to the intersite interactions the quadrupolar Kondo effect, leading to a
quadrupolar singlet at each site, has to be taken into account. Hence, the single-site
and intersite interactions compete and cannot be satisfied simultaneously. The interplay
of all these interactions gives rise to a non-universal behaviour, in which the spins are
ferromagnetically coupled, but the quadrupolar pseudospins of the impurities are partially
compensated into Kondo singlets and partially aligned with each other. The situation is
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then similar to the two-impurity Kondo problem with ferromagnetic RKKY, but now for
quadrupolar degrees of freedom: the global ground state is a quadrupolar singlet, which is
formed in two steps, namely first the pseudospins 1/2 couple to a pseudospin 1, which is
then compensated into a singlet by the conduction electrons [18].

The third situation that could be analysed is the interaction among two unlike integer-
valent Mn ions. The RKKY interaction of one Mn3+ with one Mn4+ ion is antiferromagnetic
at short distances. But in this case the eg electron would be able to hop between the two
sites giving rise to a strong ferromagnetic double-exchange mechanism. This mechanism is
proportional tot and more important than the RKKY interaction (which is of orderV 4).

4. Pair of impurities in the mixed-valent regime

4.1. Slave-boson formulation

We introduce slave-boson creation and annihilation operators [19] for the impurities,b
†
jM

and bjM , which act as projectors onto the corresponding impurity states of the Mn4+

configuration with spin componentM at the sitej . Similarly we introduce fermion creation
and annihilation operators for the Mn3+ states at the sitej , d†jM∗m anddjM∗m. They satisfy
the completeness relation [19]∑

M

b
†
jMbjM +

∑
M∗m

d
†
jM∗mdjM∗m = 1 (11)

which is equivalent to the condition (2), i.e. that each impurity has to be in one and only one
of the states of the Mn3+ and Mn4+ configurations. The operators describing the transitions
between the configurations are rewritten as

|jSM〉〈jS∗M∗m| = b†jMdjM∗m (12)

and the Hamiltonian in terms of slave bosons is then

H =
∑
kmσ

εkc
†
kmσ ckmσ + εeg

∑
jM∗m

d
†
jM∗mdjM∗m

+V
∑

kjσmMM∗
(SM, 1

2σ |S 1
2S
∗M∗)[exp(ik ·Rj )c†kmσb

†
jMdjM∗m + HC]

−t
∑

mσM1M2M
∗
1M
∗
2

(SM1,
1
2σ |S 1

2S
∗M∗1)(SM2,

1
2σ |S 1

2S
∗M∗2)

×{d†1M∗1mb1M1b
†
2M2
d2M∗2m + d†2M∗2mb2M2b

†
1M1
d1M∗1m} (13)

subject to the constraint (11), which restricts the model to the physical subspace.
The above slave-boson formulation is exact, i.e. it does not contain approximations

with respect to the original two-impurity Hamiltonian, equation (1). The mean-
field approximation for the slave-boson formulation has given qualitatively and even
quantitatively reliable results for the single-impurity [20], two-impurity [21] and lattice
[21–23] Anderson models. In the mean-field (saddle-point) approximation [20] we replace
all boson operators by their expectation value, i.e.〈bjM〉 = 〈b†jM〉 = b, where we assumed
that both sites have the same valence. In zero magnetic field the ground state is(2S + 1)-
fold degenerate and allb†M operators have the same expectation value. The constraints (11)
are incorporated via Lagrange multipliersλj . If the two impurities are assumed identical
we haveλ1 = λ2, so that the subindex can be dropped. It is useful to introduce states with
even and odd parity about the midpoint between the impurities, i.e. withP = ±1, [21]

dPM∗m = 2−1/2(d1M∗m + Pd2M∗m). (14)
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The hopping between sites is most effective if the two impurities are in the same state,
i.e. M∗1 = M∗2 . The hopping amplitude between different states, i.e.M∗1 6= M∗2 is strongly
reduced by the Clebsch–Gordan coefficients. It is a reasonable approximation for the ground
state to keep only the largest hopping term and neglect all others. In terms of the parity
states the mean-field Hamiltonian then takes the form

Hmf =
∑
kmσ

εkc
†
kmσ ckmσ +

∑
PM∗m

[εeg + λ− tb2P ]d†PM∗mdPM∗m

−2λ+ 2λ(2S + 1)b2+ 2−1/2V b
∑

kPσmMM∗
(SM, 1

2σ |S 1
2S
∗M∗)

×{c†kmσ [exp(ik ·R1)+ P exp(ik ·R2)]dPM∗m + HC}. (15)

The minimization of the ground state energy with respect tob andλ then yields

2(2S + 1)λb − tb
∑
PM∗m

P 〈nPM∗m〉 + 2−1/2V
∑

kPσmMM∗
(SM, 1

2σ |S 1
2S
∗M∗)

×[exp(ik ·R1)+ P exp(ik ·R2)]〈c†kmσdPM∗m〉 = 0

1= (2S + 1)b2+ 1
2

∑
PM∗m

〈nPM∗m〉. (16)

The expectation values〈d†PM∗mdPM∗m〉 and〈c†kmσdPM∗m〉 are obtained from the one-particle
Green functions for the mean-field Hamiltonian. The Green functions involve the following
expression [21]

∑
k

1− P exp(ik ·R)
z− εk ≈ −iπρF

[
1+ P sin(kFR)

kFR

]
= −iπρFFP (17)

whereR is the distance between the impurities andρF is the density of states of the
conduction electrons at the Fermi level. In equation (17) we carried out the angular
integrations and then projected the energy onto the Fermi level [21]. The Green function for
the eg electron with quantum numbersP,M∗ andm is then diagonal and involves a single
resonance. The resonance width depends on the parity and isπρFV

2b2FP . The mean-field
relations then lead to the following transcendental equations

ε̃ = εeg + deg
0

2π

∑
P

FP ln

(
D√

(ε̃ − P tb2)2+ (0b2FP )2

)
+ deg

0

4π
tb2

∑
P

PFP

ε̃ − P tb2

b2 = 1

(2S + 1)
− deg

0

2π
b2
∑
P

FP

ε̃ − P tb2
(18)

where0 = πV 2ρF , ε̃ = εeg + λ and deg is an effective degeneracy. The sum over the
eg levels and the Clebsch–Gordan coefficients leads then to deg= 2(2S + 2)/(2S + 1).
Here we assumed that there is no external magnetic field. The ‘small parameter’ of this
mean-field theory is the inverse of the degeneracy. The larger the degeneracy the smaller
are the contributions from fluctuations about the saddle point (1/deg expansion) [20].

For the spin-polarized system, on the other hand, only〈b†S〉 is different from zero and
the Clebsch–Gordan coefficient is just one, so that deg= 2, arising from the two orbital
degrees of freedom. Hence, the above results also hold for the ferromagnetic lattice if we
set deg= 2 andS = 0 (the total polarization quenches the spin).
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4.2. Results

We assume now that the two impurities are very far apart, i.e.FP = 1 and t = 0. For
εeg � 0 we can neglect̃ε on the right-hand side of the first of equations (18) and obtain
the characteristic energy scale (Kondo temperature) for an isolated impurity

T ∗K = D exp[πεeg/0 deg]= D exp[−a(S)/(J ρF )] (19)

where a(S) = (2S + 1)/(2S + 2) in zero field anda(S) = 1 for the spin-polarized
situation corresponding to an effective degeneracy deg= 2/a(S). The values ofa(S)
obtained within the mean-field slave-boson approach (they are equal to those for the non-
crossing diagram approximation) are slightly different from the ones generated by the
renormalization group equations [12]. The energy scale arises from the interplay of the
spin Kondo effect (undercompensated impurity) and the quadrupolar Kondo effect. Within
the leading logarithmic approximation the renormalization group consists of three non-trivial
amplitudes, while in mean-field approximation theT ∗K depends only on the parametersS
and deg. An approach involving only one-particle Green functions (many-particle Green
functions are factorized in mean field) cannot take into account the full many-body structure
of the problem. However, the differences in thea(S) is small and they agree in the limiting
casesS = 0 andS → ∞. On the other hand, for the spin-polarized system the energy
scales are identical (pure quadrupolar Kondo effect).

We have solved equations (18) numerically and obtained the ground state energyEG =
εeg − ε̃, the valencend = 1− (2S+1)b2 and the charge susceptibilityχcharge = −∂nd/∂εeg .
These quantities as a function ofεeg are shown in figures 1(A)–1(C) and 2(A)–2(C) for
S = 3/2 (zero magnetic field) andS = 0 (spin-polarized system), respectively. The band
cutoff and the hybridization matrix element chosen for these figures areD = 10 andV = 1,
and the four curves shown refer to (a)t = 0, kFR = π , (b) t = 0, kFR = π/2, (c) t = 2,
kFR = π and (d)t = 2, kFR = π/2. ForkFR = π the resonance widths of the localized eg

electrons are the same for even and odd parity and equal to that of an isolated impurity. For
kFR = π/2, on the other hand, the states with even parity have a much broader resonance
width than the states with odd parity. The hoppingt gives rise to a splitting into bonding
and antibonding states.

For t = 0 the ground state energy per Mn ion is essentially the same as for an isolated
impurity, independent of the interference amplitude sin(kFR)/(kFR). If t = 0 the bonding
and antibonding states have the same resonance energy and their tails in the density of
states are occupied simultaneously. For finitet the bonding states (having lower energy)
are occupied first and then are antibonding states. This, on the one hand, lowers the energy
of the system and, on the other hand, substantially broadens the intermediate valence regime.
This effect is larger in the spin-polarized limit because of the smaller effective degeneracy
of the states (the spin is quenched). The value ofb2, which determines the valence, varies
between 0 (Kondo limit) and 1/(2S + 1) (Mn4+ limit). The range of variation of the
bonding–antibonding splitting (given by 2tb2) is then much larger for the ferromagnetic
system, and consequentlynd againstεeg is much broader in this case. The rate of change
of nd with εeg determinesχcharge and is shown in figures 1(C) and 2(C).

To determine the quadrupolar susceptibilityχquadr we lift the degeneracy of the two eg
levels by a small quadrupolar field and obtain

χquadr = (2S + 1)
deg

8π

∑
P

0b2FP

(ε̃ − P tb2)2
. (20)

In the Kondo regime bothb2 and ε̃ are proportional toT ∗K , so thatχquadr ∝ (T ∗K)−1. It is
then convenient to display the logarithm ofχquadr to explicitly show this behaviour (see
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Figure 1. (A) Ground state energy, (B) number of localized eg electrons, (C) charge
susceptibility, (D) quadrupolar susceptibility, (E) population difference between bonding and
antibonding states and (F) response function for charge imbalance between the two sites as a
function of εeg per Mn impurity withD = 10 andV = 1. The results were obtained within the
mean-field slave-boson approach assuming no external magnetic field (S = 3/2 and deg= 2.5).
Curves (a) correspond tot = 0 andkFR = π , (b) to t = 0 andkFR = π/2, (c) to t = 2 and
kFR = π and (d) tot = 2 andkFR = π/2.

figures 1(D) and 2(D)). Ift = 0 the dependence ofχquadr on εeg is similar to the isolated
impurity. Due to the smaller degeneracy the quadrupolar susceptibility fort = 0 in the
Kondo regime is larger in the spin-polarized phase than in zero magnetic field. The large
quadrupolar susceptibility in the Kondo limit is strongly reduced by the bonding–antibonding
splitting 2tb2. For t 6= 0 the quadrupolar screening of the molecule takes place in two steps,
defined by the constant slope segments in figures 1(D) and 2(D). Asεeg →−∞ the relevant
energy scale in each case is againT ∗K . From these results we conclude that the intersite
hopping stabilizes the pair of impurities with respect to quadrupolar lattice distortions of
the Jahn–Teller and small polaron type.

The population difference between the bonding and antibonding states is shown in
figures 1(E) and 2(E). This difference is of course zero fort = 0 andkFR = π (curve (a)).
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Figure 2. (A) Ground state energy, (B) number of localized eg electrons, (C) charge
susceptibility, (D) quadrupolar susceptibility, (E) population difference between bonding and
antibonding states and (F) response function for charge imbalance between the two sites as a
function of εeg per Mn impurity withD = 10 andV = 1. The results were obtained within
the mean-field slave-boson approach assuming a spin-polarized lattice (S = 0 and deg= 2.0).
Curves (a) correspond tot = 0 andkFR = π , (b) to t = 0 andkFR = π/2, (c) to t = 2 and
kFR = π and (d) tot = 2 andkFR = π/2.

The difference is given by

nb − na = (2S + 1)
deg

2π

∑
P

P0b2FP

ε̃ − P tb2
(21)

and is largest in the Kondo regime where the width of the levels is smallest. The intermediate
valence regime grows witht and is much more pronounced in curves (c) and (d), in particular
for the spin-polarized system.

The response to a charge imbalance between the two sites, i.e. the two sites having
different valence, corresponds to the bubble diagram consisting of one bonding and one
antibonding propagator, i.e. the correlation function ofb2∑

mM∗ d
†
+M∗md−M∗m with its
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Hermitian conjugate, and is given by

χab = (2S + 1)
b2deg0/(2π)

t2+ 02[sin(kFR)/kFR]2

×
∑
P

P

{
sin(kFR)

2kFR
ln[(ε̃ − P tb2)2+ (0b2FP )

2] + tb2FP

ε̃ − P tb2

}
. (22)

This correlation function vanishes in the integer-valent limits, because either there is already
one electron per site or there is no electron to be transferred. The results are displayed in
figures 1(F) and 2(F) as a function ofεeg . A charge imbalance is most favourable in the
mixed-valent regime fort = 0 for the spin-polarized situation. The intersite hopping reduces
χab and stabilizes the charge. Charge order then becomes less favourable with growingt ,
but it is more likely in a ferromagnetic lattice.

5. Concluding remarks

We considered a pair of interacting integer-valent (trivalent and tetravalent) and intermediate
valence Mn impurities with its ground state wavefunction being a linear superposition of
the Mn3+ and Mn4+ configurations. In the manganites (cubic symmetry) the Mn4+ ions
have three localized d electrons in the t2g orbitals, while the Mn3+ configuration has an
additional d electron with eg symmetry. The first of Hund’s rules couples all the d electrons
ferromagnetically, maximizing the total spin of each impurity. The two configurations are
mixed by the intersite hopping and the hybridization of the eg orbitals with the conduction
band. In zero magnetic field the ground state of each impurity is(2S + 1)-fold degenerate
because both configurations are magnetic.

Two situations have to be distinguished: (a) two integer-valent impurities of equal
valence and (b) two intermediate valence ions. In the former case the hopping does
not play any role; and the interaction mediated by the conduction states is of the RKKY
type. For the latter situation the double-exchange mechanism dominates over the RKKY
interaction. Close to integer valence there is a crossover between these two regimes
where the two interactions have comparable strength. In the manganites, close to integer
valence, the interaction is dominated by the superexchange mediated by the O2− ions. This
antiferromagnetic interaction is not considered in our simple model.

For two impurities with the same integer valence the intersite hoppingt can be neglected.
Mn4+ impurities are only weakly coupled to the electron gas and the amplitude of the RKKY
interaction between two Mn4+ ions is then small. The situation is different for Mn3+

impurities, where the interaction with the electron gas corresponds to a strong coupling
fixed point. This interaction leads to screening in both the spin and orbital channels, i.e.
to a combined spin and quadrupolar Kondo effect. Within the leading logarithmic parquet
approximation for the integer-valent limit (Mn3+) the interaction is described in terms of four
vertex amplitudes, namely a trivial normal scattering amplitude and three non-trivial ones.
The latter ones correspond to a pure spin exchange, a pure quadrupolar exchange (the eg

levels are represented by an isospin) and a combined spin and orbital exchange interaction.
All three exchange amplitudes diverge at the same energy, which definesT ∗K . The Kondo
temperature depends on the exchange coupling in the usual exponential form, but with a
coefficienta(S) representing an effective degeneracy. For the spin-polarized situation the
spin exchange is suppressed and a pure quadrupolar Kondo effect is obtained (only one non-
trivial vertex) that leads to the orbital singlet. The RKKY interaction between neighbouring
sites (assumingkFR small) is ferromagnetic for the spins. The single-site and intersite
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interactions for the quadrupolar pseudospin compete and cannot be satisfied simultaneously.
The interplay of all these interactions gives rise to non-universal behaviour, in which the
quadrupolar pseudospins are partially compensated into Kondo singlets and partially aligned
with each other. The situation is similar to the two-impurity (magnetic) Kondo problem
with ferromagnetic RKKY: the global groundstate is a quadrupolar singlet, which is formed
in two steps, namely first the pseudospins 1/2 couple to a pseudospin 1, which is then
compensated into a singlet by the conduction electrons [18].

For the impurities in the intermediate valence regime we calculated the ground state
energy, the valence, the charge susceptibility, the quadrupolar susceptibility, the population
difference between the bonding and antibonding states and the response function for a
charge imbalance between the two sites within the mean-field (saddle-point) slave-boson
approach. This mean-field approximation is an expansion in terms of the inverse of an
effective degeneracy for the d electron with eg symmetry. In particular we focused on the
interplay between the intersite hopping and the Kondo effect. The intersite hopping couples
the two impurities ferromagnetically, as expected from the double-exchange mechanism
[14]. The hoppingt splits the impurity states into a bonding and an antibonding state.
These correspond to states with even and odd parity with respect to the midpoint between
the impurities. Bonding and antibonding states act similarly to two impurities with different
d electron energyεeg (the splitting). Hence, the corresponding d levels are populated at
a different rate. This considerably broadens the intermediate valence regime, especially
in the spin-polarized regime where the effective degeneracy is smaller. Consequently, we
conclude that the hoppingt strongly reduces the peak of the quadrupolar susceptibility in the
Kondo regime for both- the zero-magnetic-field and the spin-polarized situations. As seen in
figures 1(D) and 2(D) the slope of lnχquadr with εeg in the Kondo regime is asymptotically
the same independently oft , but the prefactor is strongly reduced witht , especially in the
ferromagnetic regime. This trend is reversed forεeg > 0 (the perturbative regime in powers
of V ) because increasingt enhances the occupation of the bonding level as compared tot =
0. The linear response to the quadrupolar splitting of the eg levels is related to the coupling
of the ions to the lattice (Jahn–Teller effect) and hence to the effective Mn–O–Mn bond
lengths and angles. The present approach indicates thatt suppresses these lattice distortions.

Also the peak in the charge susceptibility in the intermediate valent region and the
response function for charge imbalance between sites are strongly reduced by the intersite
hopping in both zero magnetic field and for the ferromagnetic lattice. Since the area under
the charge susceptibility is normalized to one, a reduction of the peak automatically implies
an enhancement in the tails. The charge imbalance response function basically tracks the
trends of the charge susceptibility. These quantities are a measure of the potential for charge
order in a lattice of Mn ions and the formation of small polarons. It is still an open question
whether the coherence in the lattice reverses this trend in accordance with the experimental
observations.

Acknowledgments

The support by the US Department of Energy under grant No DE-FG02-98ER45707 and
by the US National Science Foundation under grant DMR98-01751 is acknowledged.

References

[1] Jin S, McCormack M, Tiefel T H, Fleming R H, Phillips J and Ramesh R 1994Science264 413
[2] Jonker G H and van Santen J H 1950Physica16 337



Pair of intermediate valence manganese impurities 10261

Jonker G H 1956Physica22 707
Wollan E O and Koehler W C 1955Phys. Rev.100 545

[3] v. Helmolt R, Wecker J, Holzapfel B, Schultz L and Samwer K 1993Phys. Rev. Lett.71 2331
Chahara K, Ohuo T, Kasai M and Kozono Y 1993Appl. Phys. Lett.63 1990
Xiong G C et al 1995Apl. Phys. Lett.66 1427
Tokura Y et al 1994J. Phys. Soc. Japan63 3931

[4] Zhao G, Conder K, Keller H and M̈uller K A 1996 Nature381 676
[5] Millis A J, Shraiman B I and Mueller R 1996Phys. Rev. Lett.77 175
[6] Snyder G J, Hiskes R, DiCarolis S, Beasley M R and Geballe T H 1996Phys. Rev.B 53 14 434
[7] Booth C H, Bridges F, Snyder G J and Geballe T H 1997Phys. Rev.B 54 15 606

Billinge S J L,DiFrancesco R G, Kwei G H, Neumeier J J and Thompson J D 1996Phys. Rev. Lett.77 715
[8] Millis A J, Littlewood P B and Shraiman B I 1995Phys. Rev. Lett.74 5144

Furukawa N 1995J. Phys. Soc. Japan64 2734
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